
ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP046 – Programming in Python

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP046 – Programming in Python

☐ 1. Computational Thinking

☐ 2. Control Flow in Algorithms

☐ 3. Flowcharts and Pseudocode

☐ 4. Iteration in Scratch

☐ 5. Robot Maze in Scratch

☐ 6. Programming Languages

☐ 7. Getting Started with Python

☐ 8. Data Types and Variables

☐ 9. Commenting

☐ 10. Errors and Tracing

☐ 11. Strings

☐ 12. Maths Functions

☐ 13. Lists

☐ 14. Sorting Lists

☐ 15. Searching Lists

☐ 16. Arrays

☐ 17. Procedures

☐ 18. Creating Procedures

☐ 19. Scope

☐ 20. OOPL

☐ 21. Creating a Game

Section Do This

Contents

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP046 – Programming in Python

In our first set of Algorithms resources, we developed some

standard instructions for escaping a maze. We’ll now have a go at

creating this in Scratch.

This project is difficult; there are lots of little things to get right.

Use the tips below to help you through, but add your own

personal flourishes wherever you like. Aim to make your finished

project look different to ours so that everyone can see you have

built it yourself.

Designing Your Maze

a. Like ours, yours should be a simple maze. This means that there is an entrance, an exit

and all the dead ends you like, but no places where the robot can go around in a circle.

There should be no loops.

b. Your maze will be the backdrop to the stage. The backdrop is set using the controls to

the left of the Sprites pane (as shown on the right).

c. Start by creating a simple maze using the painting tools in Scratch. Click the ‘Paint new

backdrop’ icon and use the whitespace on the right as your canvas.

d. Choose the line tool, increase its thickness and start creating your maze. Hold down the shift key whilst drawing so that

the lines are perfectly horizontal or vertical. Use the keyboard shortcut ‘Ctrl + Z’ to undo the last line. Make your first

maze very basic.

e. Select a sprite to use as your robot. We have chosen a beetle but any will do. Use a script like the one shown below to

position your robot in its starting position. You will need to set it to a suitable size (ours is 40%).

Aim: Using Scratch
programming to
create a maze
escaping robot.

Robot Maze in Scratch

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP046 – Programming in Python

As you have learned, there are many programming languages out there. We are going to have a look

at some Python programming code. The reasons for choosing this language include:

1. It is relatively easy to understand – there are not too many fiddly rules to remember.

2. Python is a cross-platform language. It can be used on many devices and operating systems.

3. You can create and test some simple scripts using the website www.repl.it.

4. There are a large number of libraries available online. These are ready-written programs that carry out common tasks.

5. Python is used by many of the biggest tech companies.

Having said this, programming languages have many similarities. Once you’ve got your head around the basics of programming

it’s much easier to learn new languages as and when you need to.

Task 1 – Getting Started in Python Online

You will be using a website called repl.it. This site allows you to play around with bits of Python code without the need to install

applications. There are limitations to what you can do in repl.it, but it’s a great way to get started.

a. Navigate to the website https://repl.it/languages/python3 (or visit www.repl.it and search for Python3). It is better to set

up an account so that you can save your work.

b. In a new session, type the code print ('Hello, world!') in the coding

window. This is the white window on the left of the screen.

c. Click the Run button (or press ‘Ctrl + Enter’). The Run button briefly

turns to Stop. This can be used to halt programs.

d. Look at the output in the

console. This is the black

window on the right of the

screen.

e. Change the code in the coding window so

that the output displays a different

message when you run the program.

f. Create code so that you get the output

shown on the right. You can use two lines of

code with two print statements.

Extension

Try achieving this last task with one print statement.

Use \n to create a new line in your text.

Aim: Try
some Python
programming.

Getting Started with Python

View the

output from

the program

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP046 – Programming in Python

A string is any sequence of characters such as letters, numerals, symbols and punctuation marks. A string

has a certain length and with a little bit of coding, can be divided, reversed or changed to uppercase etc.

We can operate on strings using functions and methods.

Task 1 – String Functions

A function is a section of programming code that performs a specific task. It is common to enter some data into the function

(the input) and receive some different data back (the output). There are lots of built-in functions in Python that you can make

use of. You can also write your own functions to carry out a particular job.

The syntax for using a function with a string is: function(string) e.g.: len(my_string)

Note: If you have worked through all tasks up to this point, you will have used the built-in functions input, int, str, float and print.

len is a built-in function which tells you the length of a string.

len("rose") is 4, as there are 4 letters in the word “rose”. Notice that the word rose has to be placed in quotes in the code.

If a variable my_var is assigned the word

“horse”, then len(my_var) is 5. We don’t need

to place quotes around a variable in the code.

Set up the program on the right in repl.it and

see how it works. Save as ‘11.1 len’.

Task 2 – String Methods

A method is in many ways similar to a function. In technical terms, it is a section of code that acts on a certain object such as a

string. Both functions and methods are examples of procedures.

The syntax for using a method with a string is: string.method() e.g.: my_string.upper()

upper is a method that converts a string to uppercase letters.

a. Set up the program on the right in repl.it and see how it works. Save as

‘11.2 upper’.

b. Write down the output you get from this program. _________________

c. What happens if you add some numbers and symbols to the original string? __________________________________

d. Create similar programs that demonstrate each of the methods in the table below. What does each method do?

Method Save As Example Use Example Inputs Outputs

lower 11.2 lower output = text.lower() “Hello”, “HELLO”

capitalize 11.2 capitalize output = text.capitalize() “hello”, “HELLO”

islower 11.2 islower output = text.islower() “hello”, “HELLO”, “Hello”

isalpha 11.2 isalpha output = text.isalpha() “Hello”, “Hello1”, “111”

Aim: To investigate
the manipulation of
strings in Python.

Strings

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP046 – Programming in Python

A list in Python is an ordered set of data. The following line of code will create a list called my_list. In

this case, the list will contain integers.

The list has four items (or elements). You can find what data is in any position in the list using the index. The indexes start at 0.

 my_list[0] This is 12, the first item in the list.

 my_list[1] This is 22.

 my_list[3] This is 7812, the last item in the list.

Task 1 – Investigating Lists

The program below creates a list of numbers set as the strings “One”,

“Two”, “Three” and “Four”. When the program is run, the console displays

the output shown on the right.

a. Recreate the program in repl.it, saving as ‘13.1 Basic Lists’. Use the code

and the output to work out exactly what each line is doing and add

comments to the program to demonstrate your understanding.

Note: This program uses ‘for’ loops, a type of count-controlled loop.

b. There is a problem with the last section. It’s only displaying “One”, “Two” and “Three”. This is because the range (0,3)

only includes the numbers 0, 1 and 2; it stops short of the last item. Change the code so that it displays the whole list.

c. Edit the code so that the list includes numbers up to “Six”. It should also display all six numbers when running the last

section of code.

d. Add a line that writes “The 5th item in this list is…” to the console, as has been done with the 1st and 4th items.

e. Add some blank lines to separate the different sections in the output. Use the code: print("")

f. Add a section which displays the number of items in the list. Use the code: items_int = len(numbers_list)

g. When you added items to the list, you would have had to change the

last number on line 11 (in our original code above). It would be better

for this to use a variable so that the change is automatic. Try the code

on the right. Save your work.

Aim: To set up
and edit a list.

Lists

Start the variable i at 0 and add

1 each loop until you reach 3.

Find the data in any position

using the indexes, which start at

0 for the first element.

Run through each element of

the list and display it.

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP046 – Programming in Python

Some procedures perform a set of tasks without returning a value. In other programming languages,

these might be called subroutines. In Python, they are all functions.

Task 1 – Calling Functions

The program below was created in repl.it. Because of the way Python works, any functions that are used have to be defined

before they can be called. For this reason, we have placed ours at the top of the code.

The actual program starts on line 15 where the user is asked to input a number. A function named ‘multiply_by_99’ is then

called. As you might guess, this multiplies the user’s number by 99 (using the star sign for multiply).

Note: To keep things tidier, functions can be placed in separate files and imported at the start of the program. We used this idea

when importing the math and random modules.

a. Create the program above in repl.it and add comments to the code explaining how each part works. Save the program as

‘18.1 Functions A’.

b. Copy the code to a new repl and adapt it so that it asks for two numbers from the user. It should then send the numbers

to a function to be multiplied together (called multiply). Change anything that you think needs to be different and include

comments to explain what you are doing. You will need to pass two arguments to the function’s parameters as shown

below. Save as ‘18.1 Functions B’.

Aim: To learn how
to create and call
procedures.

Creating Procedures

3. The argument is picked up and placed

in the parameter, number_passed.

5. After finishing, the flow of

instructions passes back to the

point where the function is called.

4. The code in the function

is executed.

1. The control flow starts here,

after the function definitions.

2. The multiply_by_99 function is called

at this point. The input becomes the

argument passed to the function.

6. The program continues

to run through.

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP046 – Programming in Python

We’re going to create a simple game that involves a player guessing the location of some hidden

treasure in a grid. Once you have built the game, you can develop it in any way that you choose.

Task 1 – The Basic Game

As the programmer, it’s your task to create the game for your friends to play. We will

start by hiding treasure in one spot on a very small 3x3 grid. Once the program is ready,

the player guesses the location and is told whether it is correct or not. If it isn’t, then the

player tries again until the treasure has been found.

As an example, the location of the treasure in the grid on the right is B3.

From a programming point of view, the grid will be stored in a two-dimensional

list as shown on the left. All the elements of the list will contain a ‘0’ except the

one with the treasure, which will be a ‘1’.

Here are some of the challenges you will need to overcome:

• Creating the list. To start off with, you can manually set one element to ‘1’ and the rest to ‘0’. This is partly shown

above.

• Allowing the player to input a guessed location such as B2 or C1.

• Converting this location into a list element such as playing_grid [1][1] or playing_grid [0][2].

• Checking to see if this location contains a 0 or 1.

• Offering some output.

• Repeating until the 1 has been found. A while loop and a Boolean variable will allow repeated guesses.

a. Write some pseudocode and draw a flowchart for this set of instructions.

Aim: To use our ideas
and programming skills
to create a game.

 1 2 3

A

B x

C

List named

playing_grid

 0 1 2

0 0 0 0

1 0 0 1

2 0 0 0

Creating a Game

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP046 – Programming in Python

Creating a Game (page 2)

h. Have a go at creating the game in repl.it. Save this version as ‘21.1 Basic Game’.

• Declare and populate the two-dimensional list with

dimensions 3x3 (as partly shown on the right). Remember

to make one element a ‘1’ and the rest ‘0’s.

• Accept the user’s guess and split this into two parts using slices

like the one shown.

• Find the 1st index of your array by converting the letter from the player’s guess. You

could use an if statement something like the one on the right. Remember that elif is

Python’s way of saying else if and that == means ‘is the same value as’. A single equals

sign changes a variable to the given value.

• Find the 2nd index of your array by converting the number from the player’s guess. A

simple subtraction should work, but you’ll need to change the text number to an

integer number first (remember that the text “1” is not the same as the number 1).

• Create some output that tells the player whether they

have found the treasure or not. If your loop is set up

correctly with a Boolean variable condition, then the

player should be able to keep guessing until the treasure

has been found.

Task 2 – Improving the Game

Once your game is up and running in its most basic form, there are hundreds of ways you can improve it. Start with the

suggestions below but incorporate your own ideas wherever you think they will help. Save this version as ‘21.2 Improved

Game’.

The User Interface

• Make sure that the input is not case sensitive, so ‘b3’ is the considered the same as ‘B3’.

• Add spacer lines so that the output is more readable.

• Add a counter that shows how many turns the player has had. Use count +=1 as shorthand for count = count + 1.

• Create a validation rule so that the player can only enter

coordinates between A1 and C3. You could start off using an if

statement with plenty of logical operators like the one below, but

you’ll need to improve on this method if the grid is enlarged at a

later time.

• Add any other bells and whistles that you think improve the interaction with the player.

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP046 – Programming in Python

Creating a Game (page 3)

The Game Board

• Move the creation of the 2D list into a separate

procedure to keep things tidy. This also gives

you the possibility of placing the function in a

separate file at a later time. You will need to

declare the list at a global level so that it can be

accessed across all functions.

• Try the code below-left for printing out the list line by line in the console. It is good for visualising the grid before

playing. You don’t want to give the location of the treasure away though, so set all the elements to 0 first then change

a chosen location to 1 after printing the output.

• We’ve fixed the coordinates of the treasure whilst testing, but a great next step would be to allow you as the

programmer to input these at the start of the game. You can begin working on a solution for this yourself, but you

should soon find that you are repeating code that you have written before. For example, you will need to validate the

programmer’s input in the same way you validated the player’s. It is time for some Modular Programming.

Task 3 – A Modular Approach

We’re going to work on a modular solution (one that is split into sections using functions) so that firstly, the code remains neat

and tidy, and secondly, we don’t have to repeat sections of code. Make a copy of your program and save this version as ‘21.3

Modular Game’.

This is an overview of what we want to happen:

1. Create the grid and fill with 0s.

2. Let the programmer input the coordinates of the treasure and validate this input. Repeat until a valid location is

entered.

3. Set the validated input as the location of the treasure.

4. Let the user guess the location. Validate the input and repeat until a valid location is entered.

5. Repeat the previous step until the treasure has been found.

a. Have a go at creating a flow chart for this process. Include as many details as you can.

b. We are going to use the following three functions:

create_grid()

validate_entry()

play_game()

The create_grid and the play_game functions will both use the validate_entry function to check that the input is acceptable.

This is the case whether the programmer is entering the location of the treasure or the player is guessing.

