
ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

You may have worked through the Introducing Python with Turtle activities and learned a little about

how programming can be used to create line drawings. We will now create some simple graphics of our

own using a straightforward list of instructions. We will also look at some of the other methods

available when using the Turtle programming language.

Task 1 – repl.it Accounts

repl.it is a website that allows you to play around with bits of Python code without the need to install applications. You

should create an account on repl.it in order to save and reuse your programs.

a. Navigate to the www.repl.it website and follow the instructions to set up an account.

b. Once logged in, have a quick look through the different facilities available.

c. To start writing a new program, either visit the languages section or click the blue new repl button. Search for ‘turtle’.

Give your program a name and a brief description if you wish.

Task 2 – A Simple Program

The program on the right creates the graphic shown. We have

imported the turtle module, created a turtle object (this time

named ‘Bob’ rather than ‘t’) and typed some instructions. The

penup instruction is like lifting the pen off the page so that lines

are not drawn; pendown lowers it again.

a. Type up the program and name it ‘2.2 Simple’. Use the

keyboard shortcuts to copy (‘Ctrl/Command + C’) and paste

(‘Ctrl/Command + V’) lines of code; they make coding much

faster and help avoid errors.

Important: Python is case-sensitive. The name ‘Bob’ is different to ‘bob’,

the type ‘Turtle’ is different to ‘turtle’ and the other

instructions in purple must all be lower-case. Check the

console for syntax errors if you run into problems.

Aim: To create some
simple graphics using
Python with Turtle.

Writing Simple Programs

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

In the previous tasks, we learned about controlling the flow of instructions using count-controlled

loops. We now have the knowledge needed to create some fantastic patterns

Task 1 – Single Colour Patterns

Have a go at creating the graphics below. Our turtle has now been called Pat. Save the programs with the names shown.

Aim: Using count-
controlled loops to
create patterns.

Creating Patterns

4.1 Five Point Star

Turns of 144°. We have

called the variable ‘i’ but it

can take any name.

4.1 Nine Point Star

Turns of 160°

Let’s speed things up

a little

4.1 Many Pointed Star

Turns of 122°

You can always click ‘Stop’

if things are going wrong.

4.1 The Sun

Turns of 170°

Go quickly around a

couple of times.
4.1 Ninja

Draw, return to centre,

turn and repeat.

4.1 Setposition

Use setposition to return

the turtle to the centre

after drawing a line

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

Nested loops are created when one loop sits inside another in a computer program. In Python with

Turtle, nested loops can be used to make intricate patterns.

Task 1 – The Turtle Army

The program below uses a loop to create 3 rows of turtles. It then uses an inner loop so that each of these rows contains 4

turtle stamps.

a. Create the program above. Make sure that you use double tab spaces (or 4 normal spaces) for lines 14

and 15 as this is how Python identifies the inner loop. Save as “5.1 Turtle Army”.

b. Which line sets up the loop for the 3 rows of turtles? Which line sets up the 4 columns?

c. How many pixels does the turtle move forward in a single row before returning to the start of the next

row?

d. What does the turtle army look like if you delete line 22? Why do you think this happens?

e. The program partially shown on the right achieves exactly the same turtle movements without using

loops. Roughly how many lines would this program need to complete the pattern?

If you like, set up the full program and save as “5.1 Turtle Army Full”. Make sure you use the fork tool

and the copy and paste shortcuts for a speedy job.

f. Adapt the original program so that it creates 5 rows of 6 turtles, as on the

right. You should only need to edit 3 lines of code from the program above.

Note: You will need to work out how far back the turtle must move in line 17.

Aim: Using loops within
loops to create more
complicated patterns.

Nested Loops

Nested Loop

This section creates a line of 4

turtle stamps. Notice that the

lines of code in this loop are

double indented.

hideturtle()

Use this method to hide the turtle

once the pattern is complete.

Start next line

This section brings the turtle

back to the start of the next line.

Outer Loop

Set up a loop to create 3 rows of

turtles

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

The problem with the validation in the last activity is that we used code such as the line below

to force a choice of either red, green or blue:

Python includes a large number of named colours, so by only offering three, you are really limiting the options.

How do we offer a greater choice of colours to our user? We could add more colours to the conditions set in the while loop, as below.

However, this is both untidy and poor programming. We need a better method.

Task 1 – Boolean Data and the Continue Statement

The Boolean data type can be one of only two possible values, True or False. A Boolean variable is useful in validation because

we can start off setting it to False and then make it True if all the conditions are met, therefore exiting the while loop.

The continue statement sends us back to the start of the loop without executing the remainder of the code.

Fork the program named “10.3 Text Validation” and edit it to create the one above. Add comments to each line explaining

how it works. Save as “11.1 Is_Validated”.

Aim: To look at more
advanced methods of
validating user input.

Better Validation

Path 1

If the data fails the 1st condition then

the program continues to loop,

otherwise it moves on.

Path 2

If the data fails the 2nd condition then

the program continues to loop,

otherwise it moves on.

Path 3

If both conditions are met, the

is_validated variable is set to True and

the flow escapes the loop.

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

Many simple games have action that takes place inside an enclosed space, often slightly smaller

than the screen. We will look at various ways of setting up boundaries so that our turtle can only

move within a confined space.

Task 1 – Creating the Border

We will start by creating a rectangular border on the screen then

return the turtle invisibly to the centre ready for action. These

instructions will be placed in a separate function called setup.

The (partly hidden) program on the right sets up the border shown

below. Create the program and save as “15.1 Border”.

Notes:

• Decide on a background colour first and set this in place using code such as:

screen.bgcolor("orange")

We will draw a rectangle over the background for our playing area.

• Create the rectangle with a width

of 600 pixels and a height of 500

pixels. The top-right corner will

have the coordinates (300, 250).

Use the setposition method, e.g.:

Jill.setposition(300,250)

Note: You might find the code in the

task “2.7 Position” a useful

starting point for the

rectangle. Open two browser

windows so that you can

easily copy and paste code

from previous activities.

• Fill the rectangle with white. Once this step is complete,

lift the pen up and move the turtle back to (0, 0).

• Increase the speed of the turtle. Perhaps use the special

speed of 0 to make things happen instantaneously.

Jill.speed(0)

Aim: To create a
confined space for
the turtle to move in.

Boundaries

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

Boundaries (page 2)

Task 2 – Testing the Border

Add a second function to your program. This one should test the boundaries, sending out

lines until you hit the border and then stamping a mark before returning to the centre.

• Copy and paste the code from the task “8.4 Box” as a starting point.

• A stamp placed with an x coordinate of 300

will be centred on the boundary line. Set the

limits of movement slightly closer to the

centre so that the circle stamp is placed

inside the border. We found that an extra

12 pixels worked well.

while xpos <= 288 and...

• Moving the turtle forward 1

pixel at a time will give the

neatest results, with the circles

being stamped just touching the

border. However, it will be a

slow process (even if you have

set the speed to 0). This is

because the program is looping

through the code hundreds of

times for each line. Setting the

movement to 5 pixels is much

faster but a little untidy around

the edges. We chose 2 pixels

when creating the image on the

right and waited patiently.

• A better solution might set a thicker line when drawing the border so

that the end position is disguised. You may then be able to set the

forward value to a much faster 5 pixels without it looking too messy.

Reduce the pen size back to 1 when you have finished drawing

the border.

Note: When testing this method, we found we needed to further

reduce the limits set in the while loop.

Extension

Start thinking about how you might get the turtle to bounce off the wall. If you would like to have a go at producing a

solution, fork your program so that you keep the above code intact.

We will work though the bouncing effect in a later task but it’s always better to think about things yourself first.

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

Release in 1972, Pong was one of the first arcade video games. It consists of two player

paddles and a ball that bounces around the court. We will build a basic version of the game.

Task 1 – Setting Up the Screen

a. Create a new repl named “17.1 Pong Setup” and set up the screen as

on the right. It is a playing area as used before with a single dotted line

down the middle (remember your count-controlled loops).

Note: The code in the program “15.3 Control” will be quite useful for

this activity, so perhaps open it in a separate browser window.

Hide the turtle used to set up the

screen when finished.

b. Add a second turtle for Player 1’s paddle. This can simple be a square shape positioned

just inside the left wall (see the picture below). Use the penup method so that the turtle

doesn’t leave a trace.

Note: The traditional paddle was actually a rectangle but (at the time of writing) this

version of Turtle didn’t recognise the shapesize method normally used to change

the shape of the turtle. Our paddles will have to be squares.

c. Write a couple of functions

that send Player 1’s paddle up

and down the playing area.

The code from “15.3 Control”

will be useful again here.

Also, add the function calls and set the keys used for up and down. We have chosen ‘a’ and ‘z’. Finally, make sure the

screen is listening for events.

d. Copy, paste and edit all the code necessary to create Player 2’s

paddle. Select some different control keys over to the right of the

keyboard for the up and down movement (we chose ‘k’ and ‘m’).

e. Add another turtle for the

ball, positioned in the

centre of the screen. Ours

is a green circle.

Aim: To develop a
version of the classic
Pong game.

Pong

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

We are going to make a maze for our turtle to navigate. We will start off with something very

simple but once you understand the concepts, you will be able to create a much more challenging

maze.

The picture on the right shows our first maze. It’s simply a single hole in

a horizontal blue wall. The turtle should not be able to move onto the

blue line but it should obviously be able to move through the gap.

Unfortunately, you are not able to simply tell the turtle to avoid blue

lines. Our solution will be a little more complicated.

We will look at our playing space as a set of small squares, each 20 x 20

pixels. Some of these squares will become building blocks for the walls.

The turtle will be able to jump between all the other squares.

Notes

• We have made our playing space a little

larger than in previous activities. The x

values now range from -310 to 310 and the

y values from -270 to 270. This makes the

space easier to work with.

• The coordinates shown are for locations

in the centre of each 20 x 20 square.

• The building blocks that make up the wall

are square blue stamps. Turtle stamps

are 20 pixels by 20 pixels.

• The green turtle will be allowed to jump

up, down, left or right distances of

exactly 20 pixels.

Task 1 – Observations

Use the diagram above to answer the following questions.

f. What will be the coordinates of the 4 corners for the new playing space? These are used during the initial setup.

g. If working from left to right, what are the coordinates of the first blue stamp?

h. How many blue building blocks are created in a row? What gap is left before we begin stamping again?

i. The higher of the two green circles is the starting position of the turtle. What are its coordinates?

j. What are the coordinates of the 4 squares the turtle could jump to from its starting position?

Aim: To create a
maze for the turtle
to navigate.

Mazes

x -300
y 260

x -280
y 260

x -260
y 260

x -240
y 260

x -220
y 260

x -200
y 260

x -180
y 260

x -160
y 260

x -140
y 260

x -120
y 260

x -100
y 260

x -80
y 260

x -60
y 260

x -40
y 260

x -20
y 260

x 0
y 260

x -300
y 240

x -280
y 240

x -260
y 240

x -240
y 240

x -220
y 240

x -200
y 240

x -180
y 240

x -160
y 240

x -140
y 240

x -120
y 240

x -100
y 240

x -80
y 240

x -60
y 240

x -40
y 240

x -20
y 240

x 0
y 240

x -300
y 220

x -280
y 220

x -260
y 220

x -240
y 220

x -220
y 220

x -200
y 220

x -180
y 220

x -160
y 220

x -140
y 220

x -120
y 220

x -100
y 220

x -80
y 220

x -60
y 220

x -40
y 220

x -20
y 220

x 0
y 220

x -300
y 200

x -280
y 200

x -260
y 200

x -240
y 200

x -220
y 200

x -200
y 200

x -180
y 200

x -160
y 200

x -140
y 200

x -120
y 200

x -100
y 200

x -80
y 200

x -60
y 200

x -40
y 200

x -20
y 200

x 0
y 200

x -300
y 180

x 0

y 180

x -300
y 160

x 0

y 160

x -300
y 140

x 0

y 140

x -300
y 120

x -280
y 120

x -260
y 120

x -240
y 120

x -220
y 120

x -200
y 120

x -180
y 120

x -160
y 120

x -140
y 120

x -120
y 120

x -100
y 120

x -80
y 120

x -60
y 120

x -40
y 120

x -20
y 120

x 0
y 120

x -300
y 100

x -280
y 100

x -260
y 100

x -240
y 100

x -220
y 100

x -200
y 100

x -180
y 100

x -160
y 100

x -140
y 100

x -120
y 100

x -100
y 100

x -80
y 100

x -60
y 100

x -40
y 100

x -20
y 100

x 0
y 100

x -300
y 80

x -280
y 80

x -260
y 80

x -240
y 80

x -220
y 80

x -200
y 80

x -180
y 80

x -300
y 260

x -140
y 80

x -120
y 80

x -100
y 80

x -80
y 80

x -60
y 80

x -40
y 80

x -20
y 80

x 0
y 80

Corner

x -310, y 270

Blue building blocks

Turtle starting

position

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

Mazes (page 2)

Task 2 – Creating the Maze

a. In a new repl named “19.2 Wall”, start by setting up your playing space as in earlier tasks. Remember that the x limits

are now -310 and 310 pixels and the y limits -270 and 270 pixels.

b. Move your turtle to the location of the first blue block. This will be our wall.

Set the shape to a blue square.

c. Use a loop to stamp a row of building blocks. Jump across the gap

(remembering that you have already moved 20 pixels forward at the end of the

last loop) and then use a second loop to complete the row.

d. We are going to prevent the turtle from moving into any space occupied by a

blue building block. For this to work, we will need to remember the location of

each building block we add to the maze.

The locations of the blocks will be stored in a

list named Walls, so put the empty list in place

first. We will then add the coordinates to the

list as the blocks are created.

e. Each time you stamp a building block, add the coordinates to the Walls

list. This can be done with the code on the right. You will need to do the

same for the second row of blocks.

f. Once the row of blocks is complete, use the code below to print the list

of stored coordinates to the console. This is a great way to check that

the program is working as intended.

 Note: This line of code can be deleted or commented out later.

g. Create a new turtle to act as your escaping player and move it to the

starting position. Ours is a green circle called Mazey. Yours may be

different.

h. Add the onkey

method calls as used

in previous activities

and make sure the

screen is listening for

events.

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

Task 1 – Controlling the Flow

Scenario Control in Place

Keep rolling the die until you get a 6.
Repeat something until a certain condition has

been met.

If you are a member then join the queue on

the left, else join the queue on the right.

Do one thing if one condition is true, otherwise do

another thing.

Go around the whole course three times. Repeat something a set number of times.

First activities: Group 1 is climbing; Group 2 is

kayaking; Group 3 is hiking.

Select from a range of possibilities depending on a

condition.

Task 2 – Looping through a Range

https://repl.it/@d2/32-Hexagon

https://repl.it/@d2/32-Octagon

Count-Controlled Loops

import turtle

Bethyl = turtle.Turtle()

Bethyl.color("blue")

Bethyl.pensize(5)

Bethyl.fillcolor("silver")

Bethyl.begin_fill()

for x in range(6):

 Bethyl.forward(50)

 Bethyl.left(60)

Bethyl.end_fill()

import turtle

Bethyl = turtle.Turtle()

Bethyl.color("orange")

Bethyl.pensize(10)

Bethyl.fillcolor("yellow")

Bethyl.begin_fill()

for x in range(8):

 Bethyl.forward(40)

 Bethyl.left(45)

Bethyl.end_fill()

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

Count-Controlled Loops Answers (page 2)

Task 2 – Looping through a Range (Cont.)

https://repl.it/@d2/32-Dodecagon

https://repl.it/@d2/32-Circle

Task 3 – Looping through a List

https://repl.it/@d2/33-List-Controlled

import turtle

Bethyl = turtle.Turtle()

Bethyl.color("blue")

Bethyl.pensize(1)

Bethyl.fillcolor("light blue")

Bethyl.begin_fill()

for x in range(12):

 Bethyl.forward(30)

 Bethyl.left(30)

Bethyl.end_fill()

import turtle

Bethyl = turtle.Turtle()

Bethyl.color("black")

Bethyl.pensize(1)

Bethyl.fillcolor("white")

Bethyl.begin_fill()

for x in range(90):

 Bethyl.forward(5)

 Bethyl.left(4)

Bethyl.end_fill()

import turtle

Bethyl = turtle.Turtle()

for distance in [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110,

120, 130, 140, 150, 160, 170, 180, 190, 200]:

 Bethyl.forward(distance)

 Bethyl.left(90)

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

Count-Controlled Loops Answers (page 3)

Task 4 – How the Sample Program Works

Line 1 Imports the turtle module into the program.

 This enables the program to understand the turtle language; it’s like the translation guide. This line must stay in place

whenever you write a turtle program.

Line 3 Says create a turtle and name it ‘t’.

 With our turtle ready to use, we can refer to it by the name ‘t’ whenever we need to. You may change the name of

your turtle if you prefer, providing you use the new name in the remainder of the code.

Line 5 Places four colours in a list and sets up a loop.

 There is a list of 4 colours to work through. The ‘for c in’ part of line 5 creates the loop. The program will run through

the loop repeatedly, working through the list of colours until there are no more left.

 The colour being used at any point is held in a variable called ‘c’. A variable is like a box that holds a piece of data for

later use (in this case, it is used again in line 6).

Line 6 Gives the turtle (named ‘t’) whatever colour is presently held in the variable ‘c’.

 The first time the program runs through the loop, the turtle is given the colour red. The second time, it is given the

colour green etc.

Line 7 Instructs the turtle to move forward 75 pixels.

Line 8 Instructs the turtle to rotate left (or anticlockwise) through 90 degrees.

Questions

1. In which line is the turtle object created (or defined)?

Line 3

2. What happens if you delete line 1 and run the program? Look at the error description in the console. Why do you think

this happens?

NameError: name 'turtle' is not defined on line 3. We haven’t imported the turtle module so the program doesn’t

understand what the word ‘turtle’ means.

3. How many times will line 6 be read by the computer when the program is run?

4 times

4. What happens if you misspell one of the colours?

The last known colour is used again. If you misspell the first colour in the list, then black is used for that line instead.

5. What do you think would happen if you simply add more colours to the list without changing anything else? Try it.

The lines are redrawn with the new colours.

