
ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP056 – Web Coding JavaScript

Web Coding

Learn about JavaScript, a programming

language that helps create dynamic changes

in a webpage.

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP056 – Web Coding JavaScript

☐ 1. Introduction to JavaScript

☐ 2. JavaScript Outputs

☐ 3. Variables

☐ 4. Strings

☐ 5. Inputs

☐ 6. Data Types

☐ 7. Functions

☐ 8. The ‘if … else’ Clause

☐ 9. Logical Operators

☐ 10. Data Validation

☐ 11. While Loops

☐ 12. For Loops

☐ 13. Noughts and Crosses

☐ 14. Arrays

☐ 15. Connect 4

☐ 16. Reversi

Checklist

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP056 – Web Coding JavaScript

JavaScript makes things happen on a webpage. The JavaScript programming language has a wide range of uses, including:

• changing text or switching images on a page after a user action;

• performing calculations and displaying the results;

• validating data entered into a form such as email addresses and telephone numbers;

• building games and other programs.

Where is the JavaScript?

JavaScript can be found in all sorts of places. In the past, scripts were often placed amongst the HTML. Web designers now try and

separate as much code from the actual content of the webpage as possible. In fact, JavaScript is often delivered to the web browser

in a separate, external file. This makes the HTML less complicated and helps search engines work out what the page is about.

Another benefit of this solution is that the JavaScript file can be stored (or cached) on the user’s machine so that other pages will

load faster if they use the same scripts.

In the example below, a JavaScript function has been added to the head section of a webpage. This particular JavaScript is executed

when the user clicks a button on the screen. We will place JavaScript in various locations as we are learning but remind you that

external script files are the more desirable solution in the long run.

Note: It is anticipated that you have a basic understanding of HTML coding before continuing. ORB Education offers a package

titled ‘Web Coding – HTML & CSS’ which covers this content. Otherwise, there is plenty of help online.

JavaScript function

The JavaScript

function runs

when a button on

the page is clicked

(don’t worry about

how all this works

for the moment)

Start script tag

End script tag

JavaScript in the Head Section

Introduction to JavaScript

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP056 – Web Coding JavaScript

Introduction to JavaScript (page 2)

Some points about JavaScript

1. JavaScript is a true programming language. Mistakes can cause errors in the webpage although most modern browsers

will simply ignore the whole script if they find issues with the coding. If nothing appears to happen on the page then it

probably means your script is being ignored.

2. JavaScript can be executed at different times e.g. when the page is first displayed, when a button is clicked, when the

mouse is placed over an object or when a form is submitted.

3. JavaScript is very fussy; you have to get the code exactly right or it will not work. This can be frustrating at times,

especially with the frequent use of the squiggly brackets { and }.

4. Visitors to your website might have JavaScript disabled. This means that they won’t be able to use anything that relies

on it.

5. The JavaScript interpreter (reader) in your browser ignores spaces and line breaks. You could write long, complicated

scripts on a single line but they would be very difficult to read and understand for the human programmer. Website

building applications will often condense JavaScript into a compact form before serving it up, so JavaScript files

downloaded from other sites may be difficult to decipher.

Task 1 – Alert Boxes

a. Let’s get started with the coding. Open a simple text editor on your computer. This may be Notepad (Windows), TextEdit

(Mac) or any other simple text editing application. We are using Notepad++ as it colours the code for us. The colours

don’t make any difference to how the code works; it’s just easier to understand for the human.

Note: Don’t use Word Processing applications such as Microsoft Word as they hide too much secret code behind the

scenes. You may use Web Design applications such as Dreamweaver, although the bells and whistles can be a

distraction when coding; better to keep things simple. Notepad++ for Windows is really one of the best apps for

these tasks. There are similar applications for the Mac such as ‘Brackets’.

b. Type the code on the right. If you are using

Notepad++, select HTML from the Language

menu to colour your code as shown.

c. Save the file as 01. Template.htm. If there is

an option to do so in your application, select

the file type HTML, htm or Hyper Text Markup

Language from the list of choices. Remember

the location of your saved file.

This file can be used as a template whenever

you need to start afresh. It is ready to accept

JavaScript and HTML content.

Note: You might still see the full attribute <script

LANGUAGE="JavaScript"> used. This is no

longer necessary as JavaScript is the default

scripting language in today’s browsers.

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP056 – Web Coding JavaScript

Strings are pieces of text. Strings are usually enclosed in double quotes. The following are all examples of strings:

"This is a string" "And another" "2"

Strings are used in association with variables e.g.

 Variable name Value

var string_1 = "This is a string" string_1 This is a string

var string_2 = "And another" string_2 And another

var string_3 = "2" string_3 2 (as text)

Task 1 – Concatenation

a. Save a copy of your template as

04. Strings 1.htm. Add the code

on the right and view the result.

The words “This is a string” should

be displayed below your heading.

b. We can use the ‘+’ sign to join two strings together. This is called concatenation. Concatenation is different to adding

numeric values together.

Adjust the script so that it

now looks like ours on the

right.

Write down the text

displayed exactly as it

appears in your browser.

c. Change the line so that it now reads:

var joinString = string_2 + " " + string_3;

How have we changed the presentation of the text?

Task 2 – Do you get it?

Analyse the script shown and write down

the text that you think it will display.

After making your prediction, type

the code into a copy of the file

saved as 04. Strings 2.htm and see if

you were correct.

Strings

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP056 – Web Coding JavaScript

Strings (page 2)

Task 3 – Length Property

A string is made up of a certain number of characters. For example, the string “house” is made up of five characters and the

string “265” is made up of three. The length is one of the properties of a string.

To find the length of a string in JavaScript, use the syntax: string.length; e.g.: myString.length;

Note: ‘Syntax’ is the structure of statements in a computer language. It is like the rules of grammar applied to computing.

In the code on the right, we have placed the word

“house” in a string named string_1. We have then

created a second variable called result which

holds the calculated length of the string Finally,

this value is displayed in the Answer paragraph on

our page. Notice that we don’t need the quote

marks when using variable names.

a. Create this code in a file saved as

04. Strings 3.htm.

b. Edit the code so that it instead displays the length of the word “multiples” and save the file.

Extension

In a copy of the file named 04. Strings 3E.htm, create code that produces the

output shown on the right, correct for whatever word is entered into the string.

Concatenate pieces of text and variables, remembering to place the

text in quotes but not the variables. Part of the code is shown below.

Once you have cracked that challenge, add some single quotes around

the word when it is displayed. Test your code with different words.

Task 4 – toUpperCase and toLowerCase Methods

A method is a section of programming code that performs a specific task on an object such as a string. There are lots of built-in

methods in JavaScript that you can make use of. We will try the string methods toUpperCase and toLowerCase.

Methods in JavaScript use the syntax: string.method(); e.g.: string_1.toUpperCase();

Create a webpage named 04. Strings 4.htm that displays the output shown below. It should take some text from a variable and

display it. It should then change the text into upper and lower case and display each of these strings. The snippet of code below

will help.

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP056 – Web Coding JavaScript

Although JavaScript can be used for all sorts of things in a webpage, we will spend some time looking at the validation of inputs as

this enables us to test lots of ideas without building complicated pages. Forms are used to collect information from the user e.g.

names, addresses and emails. These forms are found all over the internet but they have been a source of a huge number of

problems because devious people can use them to gain access to online databases. It is therefore necessary to place strict

controls over the data that is allowed through. This is an example of data validation.

As far as the validation of form data is concerned, you may refuse information for any of the following reasons:

• There are too many or too few characters (e.g. for usernames and passwords);

• A number that is either too high or too low has been entered (e.g. for age checks);

• The inclusion of unwanted characters (e.g. you may not want brackets in a telephone number field);

• An email address may clearly be fake;

• There may be computing code included in the text that is designed to infiltrate the website and database.

Task 1 – Age Restriction

An easy place to start with data validation is to check the

size of a number.

Create a file named 10. Data Validation 1.htm and check

that the age entered into a box is 13 or over. Display a

warning if it is less than 13. Place the function in your

JavaScript file.

You might also improve the display a little. We have

simply made the output paragraph red. If you understand

CSS you can make further improvements.

Task 2 – Username Length

Copy your solution and name the new file

10. Data Validation 2.htm. This page

should check that the username entered is

between 6 and 12 characters in length.

Remember that the length property (myString.length) tells

you the number of characters in a string.

Use the focus() method to return the cursor to the box if

the username is not allowed.

Extension

Using a file named 10. Data Validation 2E.htm, create a single page that checks both the age and the username. There

should be only one Check button and one function. You may make use of an else if statement.

Data Validation

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP056 – Web Coding JavaScript

We should have enough understanding now to create some more

interesting programs. We’ll start will a very simple Noughts and

Crosses game.

Task 1 – HTML and CSS

This course is about learning JavaScript rather than HTML

and CSS, so we will give you the basic design for the board.

a. Copy the code on the right into a new page named

13. Noughts and Crosses 1.htm.

b. Experiment with different designs, changing any of the

values after the colons in the style section. Note that the

width setting determines how many boxes fit across the

board div before starting a new line. This value might

need to be adjusted if you change your design.

Noughts and Crosses

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP056 – Web Coding JavaScript

Noughts and Crosses (Page 2)

Task 2 – Onclick Events

We can now add onclick events to each box, calling a function we have named clickBox.

a. Add the onclick event to each box as below. The this keyword identifies the object to the function (in this case a div).

b. Create the clickBox function. This can be placed beneath the page in the HTML; you can move it into a separate

JavaScript file later if you wish (as with the style sheet).

c. Adjust the style of your 0s and Xs if you wish, remembering that if the boxes don’t arrange themselves in a 3x3 grid then

you might have to change the width of the board div.

Questions

1. What is the starting value of the currentPlayer variable?

2. What two values does this variable switch between?

Note: The currentPlayer variable is declared outside the function. This makes it a global variable, remembered at all

times. If we declared the variable inside the function then the value would never switch; it would start as a “O”

after every click. You can test this.

3. What happens if you click on the same box more than once? How could you stop this from happening?

Try adding the if statement shown to the start of your function.

It basically stops the function processing if the selected box isn’t

empty.

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP056 – Web Coding JavaScript

We can build on the ideas from the Noughts and Crosses task to develop a simple Connect 4 game. Note that we are really

entering territory here where other, more complex methods should be used for the programming. However, we are just

practicing basic skills so will stick to the ideas that we have learned so far.

Task 1 – Coloured Circles

a. Working in a copy of your Noughts and Crosses solution (named 15. Connect 4.htm) build a 7x6 grid. By increasing the

border-radius in the style section, the shapes can be changed to circles.

b. The circles need to be given IDs. To

make things easier, our bottom row

will have the IDs 11, 12, 13 etc. The

second row up will be 21, 22, 23 etc.

The first circles created in the HTML

will be the top row, with IDs 61, 62,

63 etc.

c. Use code such as that below to change the background colour of the clicked object.

d. In the Noughts and Crosses game, we placed text in the box when it

was clicked. To find out whether a line had been formed we then

checked through the text in each box in the grid. It is possible to use

a similar solution for our Connect 4 game. However, it will make life

a lot easier if the function actually knows which circle is being clicked.

We will therefore amend our solution so that the ID is passed to the

function after a click. Change the onclick events for the circles so that

they are as below (copying into a text editor then using the Find and

Replace function will make light work of this).

As we are now working with IDs rather than objects, we must use getElementById in order to colour the clicked circle.

We have also changed our variable name from box to boxID to reflect its new contents.

Connect 4

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP056 – Web Coding JavaScript

We will finish our series of games with a real challenge. Reversi (sometimes called Othello) is a strategy game where players try

and dominate the board with as many of their own coloured discs as possible. If you haven’t played the game before, search for

‘play reversi online’ and learn about out how the game works.

This project is relatively complicated but we suggest you have a go at building a solution yourself first. Programming challenges

are interesting to think about and simply copying someone else’s program is like looking at the solution to a puzzle. Having said

this, if you have thrashed away at the problem solving for a while, it’s good to get a helping hand. We therefore do provide a

walkthrough for a solution below. Try to build this yourself first and then use our solution if required.

Task 1 – Setting up the Board

a. Working in a copy of your Connect 4 solution (named 16. Reversi 1.htm) build

an 8x8 grid. The IDs for the boxes will be 81-88, 71-78 etc.

b. We have simply set the discs with a dark green background colour in the CSS.

You may redesign the board to create a better solution.

c. Set up the initial state of the board with four

of the discs coloured at the start of the

JavaScript. You should also place these

starting values in the array that holds the

information about the current state of play.

d. Add two paragraphs to hold the scores with some initial text. The text will be replaced each time a disc is placed.

Task 2 – Adjacent Boxes

When deciding if a move is allowed, the first things to check are that:

1. The clicked box is empty;

2. One of the surrounding boxes is of the opposite colour.

Think about how these checks might be achieved. Using a copy of your file

named 16. Reversi 2.htm, have a go at building a solution to this part of

the problem. Try and use loops to check the applicable surrounding

boxes. You might also need the toString() method which is used like this:

myString = myNumber.toString()

Note that this is confusingly different to the Number function which (if you remember) was used like this:

myNumber = Number(myString)

Don’t worry if you can’t complete this task; you may move on and get help with the next one. It’s good to have a go.

Reversi

61 62 63 64 65 66 67

11 12 13 14 15 16 17

21 22 23 24 25 26 27

31 32 33 34 35 36 37

51 52 53 54 55 56 57

41 42 43 44 45 46 47

ORB Education Quality Teaching Resources – Free Sample Materials

 ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP056 – Web Coding JavaScript

Reversi (Page 2)

Task 3 – Allowed Clicks

If you completed the last task you are doing well (especially if you introduced some loops

within loops). Unfortunately, the full solution is quite a bit more complicated. Not only must

we check that the adjacent box is of the opposite colour, but if it is, we must continue checking

in that same direction to find out if one of our own discs is further down the line.

Rather than simply checking the 8 adjacent boxes, we must check lines of boxes

in all 8 possible directions.

If you think you can do this then please just continue with your own solution.

You might scan the instructions below to pick up a few ideas but do your own

thing as much as possible.

The rest of us will work through one solution, keeping things as straightforward as possible.

a. Work in a copy of your file from Task 1 named 16. Reversi 3.htm.

b. We will consider steps in each of the 8 different directions. From

our starting position, the instruction [0,1] would move us one step

to the right (up 0 rows; across 1 column). If the first step finds a

box of the opposite colour then we would continue stepping in the

same direction until we find either an empty box, one of our own

discs or we hit the edge of the board.

Similarly, each of the other 8 directions can be navigated using the

steps shown on the right.

c. Our initial JavaScript created an array called filledCircles.

This held information about the state of each box (“N”,

“B” or “W”). We then changed 4 of these to “B” or “W”

for the starting discs. Our clickBox function will first

check that the box being clicked is empty.

d. We will need the row and column of the clicked box

as a pair of numbers rather than strings. After

slicing up the ID, use the Number function to

convert the strings to actual numbers.

e. Add a variable called boxAccepted that starts with a value of

false but will be switched to true if the click is allowed.

Add the code shown on the right to your

function (but with the cut lines

completed, of course). This code places

all the steps in an array then moves

through them one at a time. The last line

is for error checking. You may remove

the comment marks to display

information about the cycle as it is

processed.

[1,1]

[0,1]

[-1,1]

[1,-1]

[0,-1]

[-1,-1]

[1,0]

[-1,0]

