
ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP058 – Python Games

Python Games

Dan Collingbourne

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP058 – Python Games

A1. Getting Started

A2. Functions & Controls

A3. Playing Areas

A4. Counting & Displays

A5. Inputs & Data Validation

A6. Lists

G1. Bounce 1

G2. Dodge 1

G3. Snake 2

G4. Tic-Tac-Toe 2

G5. Jump 2

G6. Race 3

G7. Invaders 3

G8. Reversi 4

Contents

Games Difficulty

Skills

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP058 – Python Games

 Your challenge is to create some games using the Python programming language. Although it’s not

absolutely necessary, it will be helpful if you have some prior coding experience. We will be working

through the solutions step by step but also progressing quite quickly. The idea is that you select a

game to build then study the associated skills tasks before tackling it.

Note: For a gentler introduction to Python programming please see our publication ‘Python Graphics’.

Task 1 – Coding Websites

We’re going to create our solutions in a free coding website. These sites allow you to play around with bits of programming

code without the need to install applications. For the tasks in these resources, we will use the language Python with Turtle.

This will take the Python program and display the output as a graphic. You are essentially creating instructions to control the

movement of a pen on a piece of paper.

There are numerous coding websites that you might select from. Here is a little information about a few of them:

trinket.io A good solution for most tasks. Allows you to set up an account and store your programs
online. You can also copy and paste the tasks into a Word document on your computer.

pythonsandbox.com/turtle No accounts, but a simple interface. You will need to copy and paste your programs to

store them.

app.edublocks.org A nice website with an account to store your scripts online. It is a bit slow to run programs,

however, and seems to struggle with some fairly basic scripts.

We will work in Trinket. There will be some differences if you select a different website but they all generally work in the
same way.

a. Navigate to https://trinket.io/ and follow the instructions to set up an account. We suggest you don’t add personal

information such as your real name.

b. Click New Trinket and select Python.

c. Carefully copy the code shown below into the coding window. When you are finished, click the Run button. If an error is

reported, then check your code carefully and try again. Any mistakes in commas, brackets or colons will cause problems.

Getting Started

Aim: To learn how to
create, debug and fork
programs using
Python (with turtle).

Reduce the Console

The left section of the screen is the Coding Window.
This is where you type instructions, or input.

The right section is where the results
are displayed. This is the output.

https://trinket.io/turtle
https://pythonsandbox.com/turtle
https://app.edublocks.org/
https://trinket.io/

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP058 – Python Games

In the games created here, the movements of an object will be controlled using the keyboard or

mouse. Task 1 below is also very important as it shows how to set up and call functions, used in

all but the simplest of Python programs.

Task 1 – Keyboard Commands

The program on the right will give you keyboard control

over a Turtle object called scribe. The keyboard

commands are as follows:

p Move forward 10 pixels (hold down to repeat)

w Turn right 10°

q Turn left 10°

Create the program and use the controls to produce a

pattern. Our picture below was an attempt at drawing

crop circles. Save as “A2.1 Keyboard Commands”.

Note: You might have to click on the output

window to make the controls active.

Questions about the program

a. Functions are separate sections of programming code that perform a specific task. Three functions have been defined at

the start of the program above. One of these is called go_forward. What are the other two called?

b. What name is given to the first Turtle object created in this program?

c. The Screen object must be defined before our keyboard commands can be picked up. What name is given to this object

and on which line is it defined?

d. The listen method tells the program to expect user input (the program is waiting for events). On which line is this

initiated?

e. The program is waiting for events such as the keyboard strokes p, w and q. On which three lines are these events set up?

f. The go_forward function is called in line 23. What event causes this to happen?

Edit the program in order to create some different style patterns.

Aim: Learn how to
control the turtle using
the keyboard and
mouse.

Functions & Controls

The lines within
the function

must be
indented. Use

a single Tab
indent or two

spaces.

Calling the
function takes
the program
flow through
the function
before
returning to
the original
point.

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP058 – Python Games

Difficulty = 1; Lines of code in solution = 223.

This game involves dodging objects that

are moving across the screen. The basic

game is reasonably straightforward but the

possibilities for extension are endless.

Task 1 – The Basic Game

Setting up the Screen

d. Fork your solution to “A3.1 Playing Space” from the Playing Areas tasks, naming the new copy “G2 Dodge 1”.

e. Remove the sections of code that create the dashed lines. These are not needed.

f. Define another turtle called ship. This line of code can be placed at

the top of the program so that the ship object can be accessed

everywhere (i.e. it is global).

g. For now, design the ship as a simple black square placed inside the left

border, in the middle vertically. Place this code in its own function.

h. Call the function after you have set up the playing area.

i. Add functions to control the up and down movements, triggered by pressing the

up and down arrow keys. This code can be typed or copied from your solution to

“A2.2 Arrow Keys” (this program could be opened in a second browser window).

Remember to change the name of your turtle to ship in the new code.

Adding the Projectiles

It’s now time to add some projectiles that will move along the screen from right to left. Each projectile will be a new turtle,

beginning its journey from a random spot on the right-hand side. The turtles will be stored in a list.

Note: Our partially obscured solution is shown on the next page but try this coding for yourself first.

a. If you haven’t already, work through the first section of the Counting & Displays

resource looking at random numbers. Import the random module into your program.

b. At the end of your code, define an empty list for your turtles called turtle_list.

c. Create a loop which will run until we tell it to stop.

Within this loop, create an if statement that adds a

new turtle to the list but only if there are less than 20

already. Use the len function to count the number of

turtles in the list (see below right).

Dodge

 Section Req

A1 Getting Started ✓

A2 Functions & Controls ✓

A3 Playing Areas ✓

A4 Counting & Displays ?

A5 Inputs & Data Validation X

A6 Lists ✓

Required? ✓=yes, X=no, ?=possibly

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP058 – Python Games

Dodge (page 4)

Task 2 – Fixing the Problems

We found the game worked reasonably well at this point, although we made the following observations:

• The ship could move off the top and bottom of the screen;

• There was a flicker in the centre of the screen when each turtle was created;

• The game was too easy;

• Whilst experimenting with different

values to make the game harder, we

experienced the out of range errors.

Fork the program, name the copy “G2 Dodge 2” and have a go at solving some of these problems yourself. If you need help

then work through the rest of this section.

a. Limitations can be put on the ship’s movement using code

such as ours on the right.

b. The flickering might be controlled by changing the

order of events when a new projectile is created.

If the above trick doesn’t work for you, try

the tracer and update methods as used on

the right. These will turn off all animation

whilst the turtle is being created. However,

a side effect of this is that it might also speed

up the game significantly. If so, see the

solutions below.

c. How difficult your game is depends on the website or platform you are using. Turning off the animation using the tracer

method could speed things up tremendously.

The ideas below will help you control how difficult the game is.

• Try changing speed with which the projectiles move across the

screen by editing the forward jump size.

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP058 – Python Games

Dodge (page 6)

Task 3 – Adding Functionality

There are lots of ways you might improve your Dodge game. In a fork your last solution named “G2 Dodge 3” try

some of the following.

Game Over Display

Display the words “GAME OVER” when the

ship is hit by a projectile. We have placed

the code in a function called game_over.

Start Display

Creating a Start event is a little more difficult. The main program should be

placed inside a function so that it can be called later (this is good practice

anyway).

a. Create a function for your main program. Every line moved into the

function will need one further indent.

b. Create another function which displays a start message. Choose a key to

run the main function when it is pressed.

Note: You will need to define the turtle globally as it will be needed from

other functions.

c. Hide the start display when the

main program runs.

d. Your actual program should now set up the page and run the start function.

Timer

Add a timer to your game. If you haven’t already, look through

the resource Counting & Displays and reuse the code from that

program.

Find a suitable place in your loop to recalculate and update

the time. This shouldn’t happen too often as it will slow down

the action.

Remember to import the time module and define turtles

globally if they are needed in different functions.

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP058 – Python Games

Dodge (page 8)

 Task 3 – Adding Functionality (cont.)

Stopping the Screen Refresh

You might decide that things are still all moving a little too

slowly. The problem is that the screen is refreshing each time

one of the projectiles moves a step to the left; this is slowing

everything down. To speed up the gameplay (and smooth the

visual appearance) we can refresh the display only after all the

projectiles have been moved on a step. Use the code on the

right before and after the loop to put this into place.

Note: We have also shifted the calling of our game_over

function so that the last screen refresh takes place before

everything stops. Without this edit, the ship doesn’t

appear to have been hit by a projectile.

Extension – Super Challenge

Through the years, there have been lots of games that involve objects travelling across the screen that must be avoided.

Develop your game in any way that you choose. There are some ideas below.

When building your game, break the development down into a series of small steps to take. Although this isn’t really how you

would develop a game professionally, it’s a good way for a beginner to learn. You will often find that the solutions are easier

to find than you thought they might be.

Notes:

• If you are using a website, you probably won’t be able to import images to use in your game. You will therefore

need to create shapes yourself to use. Keep things visually simple and concentrate on the functionality.

• Try and make a scrolling game infinite by generating objects randomly rather than designing them precisely.

• The Defender game has a spaceship that can shoot a laser. Our Space Invaders game will help with this

functionality.

Defender Flappy Bird Car Racing

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP058 – Python Games

Task 1 – The Basic Game

Questions about the Program

1. We have used the variable nexti for the next index in the list. Why is this equal to the number of turtles?

If there are 10 turtles, their indices will be 0-9. The next index is therefore 10.

2. Does the program stop running when 20 turtles have been created?

No. The program is still cycling the loop but no more projectiles are created. You can still move the ship.

3. We want the turtles to be formed instantly on the right-hand side without leaving a trace from the centre. How could

this be achieved?

turtle_list[nexti].speed(0)

turtle_list[nexti].penup()

4. We then want the turtles to gradually move to the left. How could this be programmed?

As per solution.

More Questions about the Program

1. What code adds 1 to the turtle count after a new one has been created?

number_of_turtles = number_of_turtles + 1

2. When moving through the list of turtles, why have we used the code range(number_of_turtles-1)?

We are working with indices which start from 0. If there are 5 turtles, they will have the indices 0, 1, 2, 3 and 4.

3. How could you hide the turtles when they reach the lefthand wall?

turtle_list[i].hideturtle()

They can also be deleted as they are no longer needed.

del turtle_list[i]

4. How do you think we’ll test to see if our ship has been hit by a projectile?

Measure the distance between the ship and each turtle. Act if this distance is less than the one specified.

turtle_distance = turtle_list[i].distance(ship)

if turtle_distance < 20:

Dodge

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP058 – Python Games

Dodge Answers (page 2)

Task 1 – The Basic Game (cont.)

G2 Dodge 1 https://trinket.io/python/0283e195f750

import turtle

import random

#CREATE THE TURTLES

window = turtle.Screen()

ship = turtle.Turtle()

#DEFINE FUNCTIONS

#Set up the screen

def setup():

 window.bgcolor("orange")

 Playing = turtle.Turtle()

 Playing.color("blue")

 Playing.pensize(2)

 Playing.speed(0)

 Playing.penup()

 Playing.setposition(300,250)

 Playing.pendown()

 Playing.fillcolor("white")

 Playing.begin_fill()

 Playing.setposition(300,-250)

 Playing.setposition(-300,-250)

 Playing.setposition(-300,250)

 Playing.setposition(300,250)

 Playing.end_fill()

 Playing.hideturtle()

#Design our ship

def design_ship():

 ship.speed(0)

 ship.shape("square")

 ship.color("black")

 ship.penup()

 ship.setposition(-200,0)

#Directional control

def go_up():

 ship.setheading(90)

 ship.forward(20)

def go_down():

 ship.setheading(270)

 ship.forward(20)

#ACTUAL PROGRAM

setup()

design_ship()

window.onkey(go_up,"Up")

window.onkey(go_down,"Down")

window.listen()

#Continued next page

https://trinket.io/python/0283e195f750

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP058 – Python Games

Difficulty = 2; Lines of code in solution = 249.

This game involves steering a snake without hitting

the walls or its own tail. Food items are gathered

by the snake, each making it a little longer.

If you’re not familiar with the game, have a look for

a version online to play. There is one hidden in

Google Search.

Task 1 – The Basic Game

Setting up the Playing Area

j. Fork your solution to “A3.1 Playing Space” from the Playing Areas tasks, naming the new copy “G3 Snake 1”.

k. Remove the sections of code that create the dashed lines. These are not needed.

l. We will look at our playing space as a set of small squares, each 10 x 10 pixels. The turtle head will move from square to

square and the body will follow. Edit your playing space so that the x and y values now range from -165 to 165. The

centres of the squares have coordinates such as those shown below.

The Snake Head

a. Define another turtle called head. This line of code can be placed at the top of

the program so that the object can be accessed everywhere (i.e. it is global).

b. Design the snake head as a 10 x

10 square of your chosen colour.

By default, it will be positioned

in the centre of the screen.

Place this code in its own

function.

c. Call the function after you have set up the playing area.

d. Add functions to control the up, down, left and right movements,

triggered by pressing the arrow keys. You only need to set the

direction as the snake will be moving continuously.

Snake

 Section Req

A1 Getting Started ✓

A2 Functions & Controls ✓

A3 Playing Areas ✓

A4 Counting & Displays ?

A5 Inputs & Data Validation X

A6 Lists ✓

Required? ✓=yes, X=no, ?=possibly

x -160
y 160

x -150
y 160

x -140
y 160

x -130
y 160

x -120
y 160

x -110
y 160

x -100
y 160

x -90
y 160

x -80
y 160

x -70
y 160

x -60
y 160

x -50
y 160

x -40
y 160

x -160
y 150

x -150
y 150

x -140
y 150

x -130
y 150

x -120
y 150

x -110
y 150

x -100
y 150

x -90
y 150

x -80
y 150

x -70
y 150

x -60
y 150

x -50
y 150

x -40
y 150

x -160
y 140

x -150
y 140

x -140
y 140

x -130
y 140

x -120
y 140

x -110
y 140

x -100
y 140

x -90
y 140

x -80
y 140

x -70
y 140

x -60
y 140

x -50
y 140

x -40
y 140

Corner
x -165, y 165

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP058 – Python Games

Difficulty = 3; Lines of code in solution = 412.

Design some racers to race around a track

then take this game forward with your own

bells and whistles.

Task 1 – The Basic Setup

Designing your Racer

m. Fork your solution to “A3.1 Playing Space” from the Playing Areas

tasks, naming the new copy “G6 Race 1”. Remove the sections of

code that create the dashed lines; these are not needed.

n. Design a racer for your game. We are going to use cars but you

can race whatever you like. Create your racer so that it occupies

a space up to 20 x 20 pixels, centred on (0,0) and pointing to the

right.

You may generate coordinates for the vertices any way you like;

we designed our character using the tools in Microsoft Word:

1. Open a new Word document and select ‘Layout / Align /

View Gridlines’.

2. Click ‘Layout / Align / Grid Settings’ and choose a

horizontal and vertical spacing of 1cm. Click OK.

3. Select ‘Insert / Shapes / Freeform: Shape’.

4. Click on the grid axes repeatedly to create the shape.

Finish with a double click.

5. To edit the shape, right click on it and select Edit Points. You may

then move the vertices. You may also add and delete points.

o. Once you have a set of coordinate pairs ready, create your

first racer using code such as ours on the right. Define

your racer globally (at the top of your program) and place

the rest of the code at the end of your setup function.

The coordinates are listed in turn using the form (y,x), each

separated by a comma. Let the coordinate pairs run onto

new lines as you type rather than forcing new lines. It

doesn’t matter where in your shape you start.

 Section Req

A1 Getting Started ✓

A2 Functions & Controls ✓

A3 Playing Areas ✓

A4 Counting & Displays ✓

A5 Inputs & Data Validation ?

A6 Lists ✓

Required? ✓=yes, X=no, ?=possibly

Race

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP058 – Python Games

Race (page 2)

Task 1 – The Basic Setup (cont.)

Moving your Racer

Use the code from the Keyboard Commands task in the Functions & Controls resource to

move your racer forwards. You will need to set up the onkey functions and tell your window

to listen for events.

Hitting the Boundaries

Add some if conditions so that the racer can’t leave the boundaries

of the playing area. If it does, then move the racer backwards

(perhaps 15 pixels?).

The Track

It’s time to design your track. In the main area of your program, define a list for the

obstacles. The list should contain a 1 where you want to place a block and a 0 otherwise.

Thankfully, you may use the Enter key within the list without affecting the program,

so make the list 30 items long and 25 items down (as ours below right). You may

need to adapt the track size if you are working on a small screen.

Note: You might create the list in MS Word

and search for the ‘1, ’s (as on the

right). This makes track design

easier.

Have a go at printing the track to the

screen. There are a few ways of doing this

but we have used a simple loop, part of

which is shown on the right.

We have registered a new shape called block, which is a 10

x 10-pixel square. Our turtle, called obstacle, moves from

the left to the right of the screen, top to bottom. Each

jump is 10 pixels. We are also moving through the track

list one step at a time. If the list element contains a 1 we

stamp a block on the screen.

Continue to the next page when you have had a go at

completing this coding yourself.

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP058 – Python Games

Invaders (page 7)

 Task 2 – Fixing the Problems (cont.)

• One way of solving this might involve creating a list of invaders to delete in the shoot function (you can still hide the

turtles without deleting them) then deleting all those in the list in the move_invaders function. You should then

redefine the blank list. This is likely to lead to different issues, however;

• Another approach might involve having a defined set of locations at any point and aligning the invaders with these.

Task 3 – Adding Functionality

We’ll now look at adding further functionality. Fork your last solution and name the copy “G7 Invaders 3”.

Start Display

a. Create a function which displays a start message.

Choose a key to run a start_game function when it

is pressed.

Note: The display turtle should be defined

globally as it will be needed from other

functions.

b. Clear the start display when the game begins then

listen for the other keyboard strokes.

c. Your actual program should now set up the page

and run the start function.

Scoring

Create a scoring system for your game.

• The display turtle can be put in place as part of your setup function. The

turtle itself and the score variable will need to be defined globally (i.e.

outside all functions).

• Add to the score each time a space invader has been destroyed.

• Remember that if you want to concatenate text with a number (such as

a score) you will need to convert the score to a string first. This can be

achieved with the str function.

• Make any other changes that improve the display. We added a baseline.

Lives

Decide on a number of lives the player should have

in the game and display this in some way.

