## Mass Conservation

A teacher demonstrated an experiment to prove that mass is conserved. This means that even if a substance is dissolved or evaporated then its mass remains the same. The experiment is shown below.


## Fact File

If one substance dissolves in another, a solution is formed.

The substance that is being dissolved is called the solute.

The solute dissolves in a liquid called the solvent.

When a solute dissolves, mass is conserved. This means that the mass of the solution is equal to the mass of the solute plus the mass of the solvent.

Separating the solute from the solvent also leaves the mass unaffected.

## Tasks

1. Label the following apparatus in the diagrams above (use each label once).

Balance Spatula Beaker Stirring rod
Bunsen Tripod Evaporating basin Filter paper
2. Write a full account of this activity. Include the names of all the apparatus used.
3. What conclusions can you make from this experiment?
4. The diagrams on the right give an idea of how the particles exist in the salt, the water and saltwater solution. Describe the arrangement of particles in each case.

5. Use the particle theory to explain why mass was conserved in this experiment.

## Key Words

Conservation. Particles. Solute. Solvent. Solution.

## Checklist for this activity

Work on the sheet/in the fileWrite full answers
Copy the diagrams$1 \square$ $2 \square 3$ $\square 4$ $\square 5$Copy the Fact FileAdd your own research

## Glassware

Cut out and match the diagrams with the labels.

## Extension

Practice drawing the diagrams as they are shown below. Notice that cross sections are used so that you can see where the openings are.


| Test tube | Stirring rod | Side-arm flask |
| :---: | :---: | :---: |
| Burette | Filter funnel | Evaporating basin |
| Beaker | Conical flask | Measuring cylinder |
| Condenser | Boiling tube | Round-bottom flask |

## Rock Salt

Rock Salt

| insoluble | pure | filtration | dissolves | evaporate | separate | residue |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Rock salt is a mixture of salt and various $\qquad$ impurities. If we stir rock salt into water, the salt $\qquad$ but the impurities do not. We can then
the salt water from the impurities using $\qquad$ (the impurities are left behind as a in the filter paper). We can then $\qquad$ off the water leaving a sample of salt behind.

Rock Salt

| insoluble | pure | filtration | dissolves | evaporate | separate | residue |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Rock salt is a mixture of salt and various $\qquad$ impurities. If we stir rock salt into water, the salt $\qquad$ but the impurities do not. We can then the salt water from the impurities using $\qquad$ (the impurities are left behind as a in the filter paper). We can then off the water leaving a sample of $\qquad$ salt behind.

Rock Salt

| insoluble | pure | filtration | dissolves | evaporate | separate | residue |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Rock salt is a mixture of salt and various $\qquad$ impurities. If we stir rock salt into water, the salt $\qquad$ but the impurities do not. We can then
the salt water from the impurities using $\qquad$ (the impurities are left behind as a in the filter paper). We can then off the water leaving a sample of $\qquad$ salt behind.

## Chromatography

Hypothesis The ink in a coloured pen is usually a mixture of dyes. We can separate these dyes because each has a different solubility. The process of separation is called chromatography.

## Apparatus

| Method |
| :--- |
| $\bar{\square}$ |
| $\square$ |

## Results

| Dyes in Ink |  |
| :--- | :--- |
|  |  |
|  |  |
|  |  |

## Conclusion

Which coloured dye was the most soluble in water?
Which was the least soluble?

## Evaluation

How well did the experiment work?
How could you separate dyes that are not soluble in water?
How could you find out which dyes have been used to create different coloured smarties?

Some ink from a black marker pen has been found at a crime scene. How could a police investigator compare the ink with pens found in a suspect's home?

