
ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

We’re going to create some patterns, pictures and other graphics using a programming language called

Python. Python is one of the easier programming languages to learn as it doesn’t have too many of the

fiddly rules and squiggly brackets that can make coding difficult. However, the fact that it’s easier to

understand doesn’t mean that Python is not powerful; it is used to code many of the world’s biggest

applications, including Dropbox, Instagram and Spotify. We will start with the very basics.

Task 1 – Coding Websites

We’re going to create our solutions in a free coding website. These sites allow you to play around with bits of programming

code without the need to install applications. For the tasks in these resources, we will use the language Python with Turtle.

This will take the Python program and display the output as a graphic. You are essentially creating instructions to control the

movement of a pen on a piece of paper.

There are numerous coding websites that you might select from. Here is a little information about a few of them:

trinket.io A good solution for most tasks. Allows you to set up an account and store your programs
online. You can also copy and paste the tasks into a Word document on your computer.

pythonsandbox.com/turtle No accounts, but a simple interface. You will need to copy and paste your programs in

order to store them.

app.edublocks.org A nice website with an account to store your scripts online. It is a bit slow to run programs,

however, and seems to struggle with some fairly basic scripts.

We will work in Trinket. There will be some differences if you select a different website but they all generally work in the
same way.

a. Navigate to https://trinket.io/ and follow the instructions to set up an account. We suggest you don’t add personal

information such as your real name.

b. Click New Trinket and select Python.

c. Carefully copy the code shown below into the coding window. When you are finished, click the Run button. If an error is

reported, then check your code carefully and try again. Any mistakes in commas, brackets or colons will cause problems.

Aim: An introductory
look at Turtle graphics
and Python using a
coding website.

Introducing Python with Turtle

Reduce the Console

The left section of the screen is the Coding Window.
This is where you type instructions, or input.

The right section is where the results
are displayed. This is the output.

https://trinket.io/turtle
https://pythonsandbox.com/turtle
https://app.edublocks.org/
https://trinket.io/

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

In the previous tasks, we learned about controlling the flow of instructions using count-controlled

loops. We now have the knowledge needed to create some fantastic patterns

Task 1 – Single Colour Patterns

Have a go at creating the graphics below. Our turtle has now been called Pat. Save the programs with the names shown.

Aim: Using count-
controlled loops to
create patterns.

Creating Patterns

4.1 Five Point Star

Turns of 144. We have
called the variable ‘i’ but it

can take any name.

4.1 Nine Point Star

Turns of 160
Let’s speed things up

a little

4.1 Many Pointed Star

Turns of 122
You can always click ‘Stop’
if things are going wrong.

4.1 The Sun

Turns of 170
Go quickly around a

couple of times.

4.1 Ninja

Draw, return to centre,
turn and repeat.

4.1 Setposition

Use setposition to return
the turtle to the centre

after drawing a line

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

Nested loops are created when one loop sits inside another in a computer program. In Python with

Turtle, nested loops can be used to make intricate patterns.

Task 1 – The Turtle Army

The program below uses a loop to create 3 rows of turtles. It then uses an inner loop so that each of these rows contains 4

turtle stamps.

a. Create the program above. Make sure that you use double tab spaces (or 4 normal spaces) for lines 14

and 15 as this is how Python identifies the inner loop. Save as “5.1 Turtle Army”.

b. Which line sets up the loop for the 3 rows of turtles? Which line sets up the 4 columns?

c. How many pixels does the turtle move forward in a single row before returning to the start of the next
row?

d. What does the turtle army look like if you delete line 22? Why do you think this happens?

e. The program partially shown on the right achieves exactly the same turtle movements without using
loops. Roughly how many lines would this program need to complete the pattern?

If you like, set up the full program and save as “5.1 Turtle Army Full”. Make sure you use the fork tool
and the copy and paste shortcuts for a speedy job.

f. Adapt the original program so that it creates 5 rows of 6 turtles, as on the
right. You should only need to edit 3 lines of code from the program above.

Note: You will need to work out how far back the turtle must move in line 17.

Aim: Using loops within
loops to create more
complicated patterns.

Nested Loops

Nested Loop

This section creates a line of 4
turtle stamps. Notice that the
lines of code in this loop are
double indented.

hideturtle()

Use this method to hide the turtle
once the pattern is complete.

Start next line

This section brings the turtle
back to the start of the next line.

Outer Loop

Set up a loop to create 3 rows of
turtles

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

The problem with the validation in the last activity is that we used code such as the line below

to force a choice of either red, green or blue:

Python includes a large number of named colours, so by only offering three, you are really limiting the options.

How do we offer a greater choice of colours to our user? We could add more colours to the conditions set in the while loop, as below.

However, this is both untidy and poor programming. We need a better method.

Task 1 – Boolean Data and the Continue Statement

The Boolean data type can be one of only two possible values, True or False. A Boolean variable is useful in validation because

we can start off setting it to False and then make it True if all the conditions are met, therefore exiting the while loop.

The continue statement sends us back to the start of the loop without executing the remainder of the code.

Fork the program named “10.3 Text Validation” and edit it to create the one above. Add comments to each line explaining

how it works. Save as “11.1 Is_Validated”.

Aim: To look at more
advanced methods of
validating user input.

Better Validation

Path 1

If the data fails the 1st condition then

the program continues to loop,

otherwise it moves on.

Path 2

If the data fails the 2nd condition then

the program continues to loop,

otherwise it moves on.

Path 3

If both conditions are met, the

is_validated variable is set to True and

the flow escapes the loop.

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

Many simple games have action that takes place inside an enclosed space, often slightly smaller

than the screen. We will look at various ways of setting up boundaries so that our turtle can only

move within a confined space.

Task 1 – Creating the Border

We will start by creating a rectangular border on the screen then

return the turtle invisibly to the centre ready for action. These

instructions will be placed in a separate function called setup.

The (partly hidden) program on the right sets up the border shown

below. Create the program and save as “15.1 Border”.

Notes:

• Decide on a background colour first and set this in place using code such as:

screen.bgcolor("orange")

We will draw a rectangle over the background for our playing area.

• Create the rectangle with a width

of 600 pixels and a height of 500

pixels. The top-right corner will

have the coordinates (300, 250).

Use the setposition method, e.g.:

Jill.setposition(300,250)

Note: You might find the code in the

task “2.7 Position” a useful

starting point for the

rectangle. Open two browser

windows so that you can

easily copy and paste code

from previous activities.

• Fill the rectangle with white. Once this step is complete,

lift the pen up and move the turtle back to (0, 0).

• Increase the speed of the turtle. Perhaps use the special

speed of 0 to make things happen instantaneously.

Jill.speed(0)

Aim: To create a
confined space for
the turtle to move in.

Boundaries

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

Boundaries (page 2)

Task 2 – Testing the Border

Add a second function to your program. This one should test the boundaries, sending out

lines until you hit the border and then stamping a mark before returning to the centre.

• Copy and paste the code from the task “8.4 Box” as a starting point.

• A stamp placed with an x coordinate of 300

will be centred on the boundary line. Set the

limits of movement slightly closer to the

centre so that the circle stamp is placed

inside the border. We found that an extra

12 pixels worked well.

while xpos <= 288 and...

• Moving the turtle forward 1

pixel at a time will give the

neatest results, with the circles

being stamped just touching the

border. However, it will be a

slow process (even if you have

set the speed to 0). This is

because the program is looping

through the code hundreds of

times for each line. Setting the

movement to 5 pixels is much

faster but a little untidy around

the edges. We chose 2 pixels

when creating the image on the

right and waited patiently.

• A better solution might set a thicker line when drawing the border so

that the end position is disguised. You may then be able to set the

forward value to a much faster 5 pixels without it looking too messy.

Reduce the pen size back to 1 when you have finished drawing

the border.

Note: When testing this method, we found we needed to further

reduce the limits set in the while loop.

Extension

Start thinking about how you might get the turtle to bounce off the wall. If you would like to have a go at producing a

solution, fork your program so that you keep the above code intact.

We will work though the bouncing effect in a later task but it’s always better to think about things yourself first.

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

Release in 1972, Pong was one of the first arcade video games. It consists of two player

paddles and a ball that bounces around the court. We will build a basic version of the game.

Task 1 – Setting Up the Screen

a. Create a new program named “17.1 Pong Setup” and set up the screen

as on the right. It is a playing area as used before with a single dotted

line down the middle (remember your count-controlled loops).

Note: The code in the program “15.3 Control” will be quite useful for

this activity, so perhaps open it in a separate browser window.

Hide the turtle used to set up the

screen when finished.

b. Add a second turtle for Player 1’s paddle. This can simple be a square shape positioned

just inside the left wall (see the picture below). Use the penup method so that the turtle

doesn’t leave a trace.

Note: The traditional paddle was actually a rectangle but (at the time of writing) this

version of Turtle didn’t recognise the shapesize method normally used to change

the shape of the turtle. Our paddles will have to be squares.

c. Write a couple of functions

that send Player 1’s paddle up

and down the playing area.

The code from “15.3 Control”

will be useful again here.

Also, add the function calls and set the keys used for up and down. We have chosen ‘a’ and ‘z’. Finally, make sure the

screen is listening for events.

d. Copy, paste and edit all the code necessary to create Player 2’s

paddle. Select some different control keys over to the right of the

keyboard for the up and down movement (we chose ‘k’ and ‘m’).

e. Add another turtle for the

ball, positioned in the

centre of the screen. Ours

is a green circle.

Aim: To develop a
version of the classic
Pong game.

Pong

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

We’re going to make a game where you catch turtles that are moving randomly around the screen.

Note: Most of the programming ideas have been covered before but we will assume that you

completed the extension task creating random turtles in the Lists resource. If you

haven’t done so, return to that activity before continuing with this one.

Task 1 – Setting Up the Game

a. Fork your program “16.E Random Turtles” and save the new copy

as “18.1 Turtle Catcher”.

b. Remove the request for user input and set

the number of turtles to 5. You should also

change the range of the loop to 5.

c. Remove the colour lists (if used) and make all turtles green. They

should also be turtle shapes. Lift the pen up so that no lines are left.

d. Check that the program sets five green turtles off bouncing around

the playing area.

e. Rather than hiding the turtle used to set up the screen, place it in the

bottom left corner ready for the game.

f. Find one of your programs that controlled the turtle using the

keyboard and copy the functions into your new program.

g. Copy the onkey method calls into your while loop (or timer function)

and make sure your program is listening.

h. There is a very useful method called distance, which will

tell you the distance between two objects at any point.

The function on the right takes one of the turtle names

as a parameter and checks how far the turtle is from the

player (called Jill, in our case). If the distance between

the player and turtle is less than 10 pixels then the turtle

is hidden. Add this function to your game.

i. This distance function should be called

each time a turtle is nudged forward.

Aim: To create a game
where players must
speedily catch bouncing
turtles.

Turtle Catcher

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

Task 1 – Controlling the Flow

Scenario Control in Place

Keep rolling the die until you get a 6. →
Repeat something until a certain condition has

been met.

If you are a member then join the queue on

the left, else join the queue on the right.
→

Do one thing if one condition is true, otherwise do

another thing.

Go around the whole course three times. → Repeat something a set number of times.

First activities: Group 1 is climbing; Group 2 is

kayaking; Group 3 is hiking.
→

Select from a range of possibilities depending on a

condition.

Task 2 – Looping through a Range

https://trinket.io/python/49c1c12d10ee

https://trinket.io/python/4adfe3bdd76c

Count-Controlled Loops

import turtle

Bethyl = turtle.Turtle()

Bethyl.color("blue")

Bethyl.pensize(5)

Bethyl.fillcolor("silver")

Bethyl.begin_fill()

for x in range(6):

 Bethyl.forward(50)

 Bethyl.left(60)

Bethyl.end_fill()

import turtle

Bethyl = turtle.Turtle()

Bethyl.color("orange")

Bethyl.pensize(10)

Bethyl.fillcolor("yellow")

Bethyl.begin_fill()

for x in range(8):

 Bethyl.forward(40)

 Bethyl.left(45)

Bethyl.end_fill()

https://trinket.io/python/49c1c12d10ee
https://trinket.io/python/4adfe3bdd76c

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

Count-Controlled Loops Answers (page 2)

Task 2 – Looping through a Range (Cont.)

https://trinket.io/python/55ce97c3faa5

https://trinket.io/python/a399f439b607

Task 3 – Looping through a List

https://trinket.io/python/e6b72d600380

import turtle

Bethyl = turtle.Turtle()

Bethyl.color("blue")

Bethyl.pensize(1)

Bethyl.fillcolor("light blue")

Bethyl.begin_fill()

for x in range(12):

 Bethyl.forward(30)

 Bethyl.left(30)

Bethyl.end_fill()

import turtle

Bethyl = turtle.Turtle()

Bethyl.color("black")

Bethyl.pensize(1)

Bethyl.fillcolor("white")

Bethyl.begin_fill()

for x in range(90):

 Bethyl.forward(5)

 Bethyl.left(4)

Bethyl.end_fill()

import turtle

Bethyl = turtle.Turtle()

for distance in [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110,

120, 130, 140, 150, 160, 170, 180, 190, 200]:

 Bethyl.forward(distance)

 Bethyl.left(90)

https://trinket.io/python/55ce97c3faa5
https://trinket.io/python/a399f439b607
https://trinket.io/python/e6b72d600380

ORB Education Quality Teaching Resources – Free Sample Materials

© ORB Education Visit http://www.orbeducation.com for the full, editable versions. CoP054 – Python Graphics

Count-Controlled Loops Answers (page 3)

Task 4 – How the Test Program Works

Line 1 Imports the turtle module into the program.

 This enables the program to understand the turtle language; it’s like the translation guide. This line must stay in place

whenever you write a turtle program.

Line 3 Says create a turtle and name it ‘t’.

 With our turtle ready to use, we can refer to it by the name ‘t’ whenever we need to. You may change the name of

your turtle if you prefer, providing you use the new name in the remainder of the code.

Line 5 Places four colours in a list and sets up a loop.

 There is a list of 4 colours to work through. The ‘for c in’ part of line 5 creates the loop. The program will run through

the loop repeatedly, working through the list of colours until there are no more left.

 The colour being used at any point is held in a variable called ‘c’. A variable is like a box that holds a piece of data for

later use (in this case, it is used again in line 6).

Line 6 Gives the turtle (named ‘t’) whatever colour is presently held in the variable ‘c’.

 The first time the program runs through the loop, the turtle is given the colour red. The second time, it is given the

colour green etc.

Line 7 Instructs the turtle to move forward 75 pixels.

Line 8 Instructs the turtle to rotate left (or anticlockwise) through 90 degrees.

Questions

1. In which line is the turtle object created (or defined)?

Line 3

2. What happens if you delete line 1 and run the program? Look at the error description in the console. Why do you think

this happens?

NameError: name 'turtle' is not defined on line 3. We haven’t imported the turtle module so the program doesn’t

understand what the word ‘turtle’ means.

3. How many times will line 6 be read by the computer when the program is run?

4 times

4. What happens if you misspell one of the colours?

The last known colour is used again. If you misspell the first colour in the list, then black is used for that line instead.

5. What do you think would happen if you simply add more colours to the list without changing anything else? Try it.

The lines are redrawn with the new colours.

